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Abstract 
Increasing popularity of XML and P2P networks has 
generated much interest in distributed processing of XML 
data. We propose a novel solution organized around a 
mediator capable of processing XQueries over multiple 
heterogeneous data sources. The solution consists in a 
hierarchical overlay network formed of peers and super-
peers indexing the XML path of data sources. Our 
solution is: (i) Scalable as the network can grow 
dynamically with size adaptative trie-based indexes in 
each super-peer. (ii) Reliable as procedures are 
developed for recovering from node failures or root 
saturations. (iii) Efficient as query processing is done by 
an existing optimized mediator that can track query 
process progresses and response sizes.  

1. Introduction 
In recent years, P2P systems have been extensively 
developed. Mostly used in file sharing applications, they 
provide a flexible medium for accessing large amounts of 
data. Among the main qualities of P2P systems, we point 
out: fault tolerance, self-reorganization, adaptation, 
reliability, and scalability. These properties should 
contribute to the introduction of the P2P paradigm in the 
context of data management systems.  
One important issue in P2P systems is how to localize 
peers that contain data relevant for a certain query. A 
system that implements a good policy of peer 
organization and query routing tends to be very efficient 
at retrieval time and result completeness.   
In our system named MediaPeer, the overlay network is 
composed of peers and super-peers, where peers are 
clustered to super-peers according to their metadata 
information and super-peers are also clustered to other 
super-peers. Every XQuery is translated to a union of 
path-sets (i.e., the XML paths referenced in the query) 
and the forwarding decisions are taken based on the index 
structures maintained at each super-peer in the overlay 
network. Routing indices extending techniques described 
in [5] but based on trie indexes are used. The indexing 
technique and the proper query execution process are 
presented in [1]. 

The organization of super-peers in a tree-like structure is 
a well-known solution (it was also proposed in other 
architectures, see for example [2]). We choose it for its 

capabilities to reduce the path search space to about 
O(logn) and to integrate several algorithms regarding the 
scalability, dynamicity and fault tolerance. We present 
these algorithms in this paper. 
Our architecture is easily deployable because a super-peer 
(a peer that will participate in the routing process) 
represents a process running at the machine containing a 
peer. This means that a systems that shares data in the 
peer-to-peer network may also participate in the routing 
process; the strategy of choosing super-peers is made 
according to the physical properties and availability of the 
peers.  
The rest of the paper is organized as follows. In section 2, 
we give a complete overview of the overlay network 
structure and develop the peer, super-peer architectures. 
In section 3, we present some solutions for dealing with 
the dynamic behaviour of the network. Section 4 is 
devoted to network recovery after failure of a node. We 
report on some experiments in section 5, and we conclude 
in section 6. 

2. The architecture of MediaPeer 
MediaPeer is a P2P data mediation system built on a 
hierarchical network formed of peers and super-peers. In 
this section, we describe the topology of the network and 
the architectures of a peer and a super-peer. 

2.1 Network Tree Topology 
MediaPeer is an overlay peer-to-peer network architecture 
that facilitates sharing and retrieval of XML data. 
Physically the network is formed only of peers but 
logically it assumes the existence of peers and super-peers 
for efficiently clustering and routing the data. Any peer 
may be a client, when requesting data, or server when 
answering to other peer queries. The super-peers serve 
only at routing the data localization demands to peers that 
share relevant data. Peers are clustered to super-peers and 
super-peers are clustered to super-peers based on data-
description criteria. The overlay network has a tree-like 
topology with peers disposed as leaves and super-peers 
disposed on different intermediate hierarchical levels.  

2.2 Overview of a Peer 
Every peer that takes part in the network may share XML 
data by providing an XML Schema abstraction of the 
local data. This abstraction is a set of XML tree 
structures, one for each collection of queryable XML 



documents. In MediaPeer we use a simple abstraction 
index – a trie index [1]. 
Our architecture is based on an existing mediator XLive 
[3]. The XLive mediator is a data integration middleware 
managing XML views of heterogeneous data sources. 
Using XLive mediator one can integrate heterogeneous 
data sources without replicating their data while the 
sources remain autonomous. Basically, the P2P overlay 
network is used to localize the data processed by the 
mediator distributed engine.  
 The architecture of a peer node is represented in figure 1. 
It encapsulates one or more data sources in 
XML/XQuery. The mediator through specific wrappers 
can query several data sources of different types. We 
experiment with relational DBMSs (Oracle, MySQL) but 
also with XML native DBMSs (Xyleme, X-Hive)[4]. The 
mediator provides three services, one to publish path-sets 
of XML views of the sources, another to accept queries, 
and finally one to publish results in XML. In our current 
system, we assume for simplicity that all XML schemas 
are derived from a unique ontology and can be integrated 
through XQuery without mapping problems. We shall 
introduce semantics mappings expressed in XQuery 
between XML schemas in a future version, similarly to 
[6] for example. 
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Figure 1. Architecture of a peer 

2.3 Overview of a Super-peer 
According to its resources (memory or computational) 
and to its network availability, any peer may also play one 
or multiples super-peer roles. This means that if a peer 
has been connected into the network for a long time and 
has enough memory to store an index, it may become a 
super-peer and, besides asking and answering queries, it 
also helps in routing queries. 
The reason that motivated our choice is that in a computer 
network (i.e., the Internet) and especially in a peer-to-peer 
network the only entities that commonly take part in the 
communication and processing are computers with similar 
resources and availability. Thence, in our network, on 
every node may reside one or multiple super-peer 
processes and always one peer process. Considering that 
peers have a dynamical behaviour (frequently leave or 
enter the network), the super-peers that help in routing the 
queries may be not stable, which may cause 
organisational problems. These problems are treated in 
the following sections.  

 
3. Network Dynamic Evolution 
In this section, we analyse the dynamic behaviour of the 
network under normal conditions (i.e., no computer or 
software failure), including load balancing. The overlay 
network structure evolves in the following cases: (1) New 
peer insertion. (2) Peer deletion (on a voluntarily basis). 
(3) Peer data source structural changes. (4) Super-peer 
insertion. (5) Super-peer deletion.  
MediaPeer implements evolution strategies inspired from 
the B-tree reorganisation algorithms. As with practical 
implementations of B-trees, we fix a maximum degree D 
for the tree and a maximum height H. D and H are 
parameters dependent on the network size. A node of 
degree greater than D is split in two. If it is the root, it is 
also split, except in the situation when the tree has 
reached height H. In this case, we implement a special 
policy to deal with network saturation that will be 
explained in the next section. Contrary to other 
architectures, only the super-peers reorganise according to 
the variable network load. We have chosen this approach 
because reorganisations are performed at low cost. 
3.1 Adding a Peer 
When a new peer wants to join the network, the following 
actions are performed: (i) Localisation of a super-peer to 
cluster the new peer. (ii) Update of all the super-peer trie-
indexes, from the peer to the root.  
For being able to enter the network, a new peer must 
know the address of a peer or of a super-peer. Several 
techniques for finding the suitable network entry point are 
possible, but a simple one is to use a server that maintains 
a reference to an entry point. Then, the peer that wants to 
enter the network sends to the entry point an entry-
demand with his IP address.  
The system has to determine the best cluster to enter the 
peer in.  For that, the demand is routed into the network 
until it reaches the root super-peer. The demand 
evaluation is at first made in a root-coordinated manner. 
The root super-peer sends a path-set request with his IP 
address to the initiator of the demand, which replies with 
its local path-set (given by the mediator metadata 
service).  
Next, the root forwards the path-set insertion demand to 
its children into the network for finding the suitable 
super-peer to connect to, i.e., the best cluster. A super-
peer receiving the path-set insertion demand computes a 
similarity measure with its trie-index. The similarity 
measure quantifies the differences between the super-peer 
index-trie and the new path-set. Sophisticated measures 
can be used, but we start with a simple one giving the 
number of paths appearing in the new path-set but not in 
the super-peer index. Measures are sent back to the 
parent, which determines the best fit. In the case where 
several super-peers return the same maximum similarity, 
the child super-peer that provides the most available 
resources is selected.  
The selected super-peer then forwards the demand to its 
children. The process goes on until the demand reaches 
the lowest level in the hierarchy, which determines the 
super-peer that cluster the new peer. All selected super-



peers on the descending path also update their trie-index 
adding information extracted from the path-set concerning 
the new peer data. A confirmation of insertion is 
forwarded up the tree, so that all concerned peers commit 
their trie-index updates including the new peer.  Before 
updating the local trie-index, every super-peer may 
perform different reduction strategies upon the incoming 
path-units [1]. 
The implemented strategy takes advantage of the 
hierarchical organization of the network. When 
connecting a new node, only the most similar super-peers 
have to process the new peer metadata. In this case the 
cost of inserting a new peer is O(h*k), where h is the 
height of the network tree and k is the average number of 
children. It is a top-down strategy that benefits from the 
peer clustering for fast insertion of a new peer.  
3.2 Deleting a Peer 
The procedure of deleting a peer is initiated on demand 
from the user, when she/he wants to leave the network. 
The peer sends a disconnection demand to his cluster 
super-peer. The demand has to go up to the root passing 
by all the super-peers in the hierarchy (DOWN-UP). The 
disconnection message must contain information 
regarding the identification of the peer so that all the peers 
on the ascending path will modify accordingly their trie-
indexes. The peer identifier is simply searched in the trie, 
and all corresponding entries are removed. Paths with no 
peer associated are also removed. 

3.3 Updating a Peer  
An update upon an XML data source structure (DTD or 
schema) at a peer changing some paths requires 
propagation in the super-peer network to maintain the 
trie-indexes. We proceed then by deleting the peer and 
reinserting it in the network. We plan to optimize path-
sets changes in the future. Versions numbers could be 
used for managing trie-index updates in real time. 

3.4 Adding a Super-Peer 
A super-peer is added to the network to keep it efficient, 
when a resource manager of a super-peer detects an 
overloading. An overloading arises when one of the 
following conditions becomes true: (i) The number of 
children of a super-peer exceeds the maximum degree D 
of the network (similar to the order of a B-tree). (ii) The 
resource manager detects an overload in message number, 
or memory size (trie-index too large with no reduction 
possibility), or average request processing time. The 
overlay-network structure changes are triggered only by 
stable conditions (i.e, the conditions are met during a time 
period). The addition of a super-peer may lead to increase 
the number of clusters containing peers with similar data. 
To distribute the load, the redistribution of the children 
(super-peers or peers) of the overloaded super-peer to 
other super-peers has to be performed. This shall be done 
under stress conditions for the overloaded super-peer. To 
avoid resource contention, we choose to create two new 
super-peers, prepare them, and finally integrate them in 
the network in place of the overloaded super-peer. The 

advantage of this strategy is to avoid disturbing the 
overloaded super-peer during the adding process. 
Let SP0 be the saturated super-peer. The splitting process 
is composed of the following steps: 
1. SP0  initiates a demand for a new SuperPeer (SPn). 
2. SP0 sends to SPn the local trie-index. 
3. SPn initiates a demand for a new SuperPeer (SPm). 
4. The trie-index and children are distributed between SPn 
and SPm. 
5. SPn and SPm open connections to SP0 father and SP0 
children.  
6. The old connections are closed. 
7. SP0 leaves the network. 
It is very important to mention that during the splitting 
process the network is running. The proposed algorithm 
guarantees a continuous network.  
The process of load distribution may be recursively 
propagated up to the root of the hierarchy if the parent 
node detects an overloading condition. It is important to 
mention that a node undertakes a split decision only after 
a period of overloading to avoid cascading reorganisation 
due to node splitting. When the process reaches the root 
node the network hierarchy shall increase with another 
level. 
3.5 Deleting a Super-Peer 
Deletion is the situation opposed to that presented in the 
previous section. It may generate the regrouping of super-
peers from the same level. The regrouping is valuable 
because it reduces the number of super-peers and, 
consequently, shortens the number of nodes that a source 
localisation request has to follow.  

Our deletion algorithm works as follows. When a super-
peer detects a reduced load, it demands to its children a 
report with the status of their activity. Following a cost 
function threshold, the super-peer may decide the fusion 
of two children.  The cost function should integrate the 
message load of the children, the sizes of their trie-index, 
and the resource capacity of the host systems. 
To fusion two super-peers, our algorithm first creates a 
new super-peer to perform the fusion. This allows the 
children to continue their routing role during fusion. The 
fusion is controlled by the parent, which demands the 
creation of a new super-peer (SPn). SPn then asks the 
merging children for their trie-index and merges them.  
When this process is finished, an index update is required 
to the parent super-peer for replacing the merged children 
by SPn in the trie-index. After the update is finished, the 
two children super-peers are destroyed as they are 
replaced by (SPn) by the quick update of the parent trie-
index (children identifiers removed and replaced). It is 
necessary that the parent super-peer blocks all the re-
organisational processes while the replacement procedure 
takes place. 

3.6 Choosing a Super-Peer Host 
When adding or deleting a super-peer, we create new 
super-peers (as explained above) that have to be hosted 
somewhere. The problem addressed in this sub-section is 
how to choose the computer that hosts a new super-peer. 



Generally, a computer that maintains a new super peer has 
to respect some constraints, among them: (i) It must not 
already host some "neighbour" super-peers. For 
enhancing the network reliability, a new super-peer 
should not be hosted on the computer where already 
resides one of its brothers, parents, or children. (ii) It must 
provide the resources required for the new super-peer. For 
solving the first constraint, the super-peer that initiates the 
creation demand send a list with the super-peers that must 
not be selected. For the second constraint, the resource 
manager checks if enough local resources exist to satisfy 
the demand.  
The nomination process proceeds as follows. A super-
peer initiates a new super-peer demand. It is sent to 
certain favourite addresses from the local list of contacts. 
If a super-peer receiving a demand is not able to meet the 
necessary resource requirements, it forwards the request 
to the addresses from his list of contacts. On the contrary, 
if the local computer has enough resources and is able to 
host a new super-peer, it holds the required resources for 
a time period waiting for a resource locking demand. 
After the time period has expired, if no locking demand is 
arrived, the resources are released. Thus, the demand for 
new resources is forwarded in an organized fashion 
starting from most favourite super-peers and ending with 
the less favourite ones. 

4. Network Reliability and Recovery  
In this section, we describe the efficient recovery 
procedures proposed for the MediaPeer network. 

4.1 Super-Peer Failure 
This case appears when a super-peer (SP) leaves the 
network due to an internal failure. There are two possible 
situations: (i) A node (peer or super-peer) detects the 
failure of its parent when passing a request up. (ii) A SP 
detects the failure of one of its child when sending a 
request down. 

In the first situation we adopt a level collaboration 
solution. This means that all the super-peers from the 
same level will collaborate in order to restore the 
functionality of the network.  When a node is not able to 
send a message to his father SP, it contacts the sibling 
nodes (nodes on the same level in the hierarchy with same 
father) and a demand is issued for the creation of a new 
father SP process (for the children) (to synchronize the 
node negotiation for finding a new super-peer, the control 
is given to the node with the smallest IP address). The 
node responsible for the creation of a new SP follows the 
algorithm presented in the previous section. The new 
created SP receives the addresses of all its children and 
directly starts the treeguide index generation by merging 
and reducing the children trie-indexes. 
For the second case we adopt a bottom-up technique. The 
children will collaborate for rebuilding a functional 
network. For that when a SP finds that one of its children 
does not respond, it sends a message requesting to one of 
the children of the failed SP to generate up a null request. 
Next, if the failure is still detected by a non-answer, the 
reorganization process takes place as described in the 

previous paragraph. In summary, the children nodes 
(peers or super-peers) always initiate the recovery 
procedure for a super-peer, as they are the ones knowing 
(partially) the path-sets to synthesize at the father. Figure 
3 illustrates the super-peer recovery procedure. 
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Figure 3. Super-peer recovery procedure 

4.2 Peer Failure 
A peer failure is normally detected by a super-peer that 
sends messages to the peer and does not receive any 
acknoledgment. In this case, the super-peer should answer 
the localisation requests, even if the peer is known as not 
answering. Two solutions are possible: the pessimistic 
one supposes that the super-peer does not answer to the 
different requests involving that peer; the optimistic one 
assumes the super-peer always answer positively. The 
first one will reduce overhead in query processing and 
seems to be preferable. In other words, it declares the 
source as non-reachable. 

4.3 Urgent Peer Elimination / Disconnection 
A computer that hosts a peer and one or more super-peers, 
when leaving the peer-to-peer network, requires the 
deletion of the peer and the replacement of the super-
peers. In this case, a demand is sent directly to the 
"Resource Manager" of one super-peer that sends 
disconnection messages to all other super-peers on the 
same system. The local super-peers make demands for 
new super-peers generation (to replace them in the 
overlay network) and accordingly, transfer them all the 
administrative information. 

4.4 Root Saturation 
 
There are two situations that generate root saturation: 
• The root memory becomes insufficient for indexing 

all the peer path-sets (index-saturation). The index-
saturation at hierarchy root is solved by performing 
trie-index reductions by indexing by prefix of labels, 
as described in [1].   

• There is an overload of messages into the network 
that leads to an outsized routing load at the root of the 
hierarchy (load-saturation), while the maximal height 
of the network has already been reached. 

For the last case, to avoid the overloading of the root peer 
with routing messages, we propose a technique of level 
flooding. This means that in the situation when a super-
peer forwarding up a routing message discovers that his 
father is overloaded, it shall transmit the message to all its 
sibling peers. In this way, all the messages are forwarded 



to peers with relevant indexes (no relevant peer will be 
skipped). In the same time the load at super-peer will be 
maintained constant. By using level flooding we take 
advantage of the flooding features (fast propagation) for a 
certain level. Depending on the branching “size” per 
level, this process may speed up the query routing 
process. In figure 4, we give an example of level flooding. 
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Figure 4. Level Flooding 

We present in the next section the results of simulations 
made over our overlay-network model, that show the 
reduction of traffic at the root super-peer in the presence 
of level-flooding.   

 

5. Some Experiences 
 
5.1 Hierarchical network routing 
We have simulated the query routing process over a 
particular model of hierarchical network (every super-
peer clusters two other super-peers and four peers) with a 
variable number of peers (8,16,32). For being able to find 
the different query paths, we consider that each query is 
addressed to only one peer. 8, 16, 32 queries were 
simulated. The path followed by each one was analysed 
by counting the number of super-peers that participate in 
the routing process and the number of links crossed by a 
query.  By adding different costs to every query action 
(routing, network transferring, index search, etc.), a 
realistic cost of routing in our model of hierarchical 
network is obtained.  
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Figure 5. Number of Routing Super-Peers 

 
According to Figure 5, we observe that the number of 
super-peers that take part in the routing process does not 
increase proportionally with the number of peers (due to 
the proposed clustering).  This means that it is more 
advantageous to route queries using a hierarchical 
network than to use  “flooding”.  In our architecture, the 

effective number of computers that communicate for 
performing the routing may be even more reduced 
(considering that two super-peers may be localized on the 
same physical machine).     
Observation:  We have analysed our most favorable case 
when a query is not duplicated at the super-peer level to 
be sent over multiple paths. However, considering that the 
peers are clustered according to their schemas, it is 
expected that the number of super-peers that are used for 
routing in general cases be close to our values.   
5.2 Level flooding 
For evaluating the effect of “level flooding,”, we have 
measured the load at the root of  the overlay network. The 
two curves in figure 6 show the load at the root in the 
presence (down)/ absence (up) of level flooding.  
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Figure 6. The influence of level-flooding 

As presented in the graphic, the level flooding method is 
suitable for distributing the load from a higher level to 
lower level super-peers. By using level-flooding, the 
system becomes more scalable and maintains the search-
space dividing features of a tree. 

6. Conclusion 
In this article, we have presented an easy deployable P2P 
infrastructure whose purpose is to integrate large 
collections of data distributed over large communities of 
peers. The main features of the presented architecture are: 
fast data localisation based on tree-organized super-peers, 
fault tolerance achieved with the network self-repairing 
architecture, easy deployment as to share data a peer must 
install some lite modules that will perform the network 
tasks. MediaPeer relies on general solutions for 
scalability, dynamicity, and fault tolerance in a P2P 
network.   
Future work includes more measurements of query 
performance under stressing conditions for the network. 
Currently, the localisation demands include simple 
filtering operators; more can be achieved with for 
example joins, where the network could be used for 
efficient join processing. Further work is also required to 
evaluate partial result policies. 
Furthermore, as mentioned above, we plan to include a 
semantic level for translating local path-sets in global 
terms according to some global ontologies. Mapping path-
sets to global ontologies is already operational in the 
Satine project [7] we are working on. 
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