
MediaPeer: a Safe, Scalable P2P Architecture
for XML Query Processing

Florin Dragan, Georges Gardarin, Laurent Yeh

PRISM Laboratory, Versailles University, FRANCE
{firstname.lastname@prism.uvsq.fr}

Abstract
Increasing popularity of XML and P2P networks has
generated much interest in distributed processing of XML
data. We propose a novel solution organized around a
mediator capable of processing XQueries over multiple
heterogeneous data sources. The solution consists in a
hierarchical overlay network formed of peers and super-
peers indexing the XML path of data sources. Our
solution is: (i) Scalable as the network can grow
dynamically with size adaptative trie-based indexes in
each super-peer. (ii) Reliable as procedures are
developed for recovering from node failures or root
saturations. (iii) Efficient as query processing is done by
an existing optimized mediator that can track query
process progresses and response sizes.

1. Introduction
In recent years, P2P systems have been extensively
developed. Mostly used in file sharing applications, they
provide a flexible medium for accessing large amounts of
data. Among the main qualities of P2P systems, we point
out: fault tolerance, self-reorganization, adaptation,
reliability, and scalability. These properties should
contribute to the introduction of the P2P paradigm in the
context of data management systems.
One important issue in P2P systems is how to localize
peers that contain data relevant for a certain query. A
system that implements a good policy of peer
organization and query routing tends to be very efficient
at retrieval time and result completeness.
In our system named MediaPeer, the overlay network is
composed of peers and super-peers, where peers are
clustered to super-peers according to their metadata
information and super-peers are also clustered to other
super-peers. Every XQuery is translated to a union of
path-sets (i.e., the XML paths referenced in the query)
and the forwarding decisions are taken based on the index
structures maintained at each super-peer in the overlay
network. Routing indices extending techniques described
in [5] but based on trie indexes are used. The indexing
technique and the proper query execution process are
presented in [1].

The organization of super-peers in a tree-like structure is
a well-known solution (it was also proposed in other
architectures, see for example [2]). We choose it for its

capabilities to reduce the path search space to about
O(logn) and to integrate several algorithms regarding the
scalability, dynamicity and fault tolerance. We present
these algorithms in this paper.
Our architecture is easily deployable because a super-peer
(a peer that will participate in the routing process)
represents a process running at the machine containing a
peer. This means that a systems that shares data in the
peer-to-peer network may also participate in the routing
process; the strategy of choosing super-peers is made
according to the physical properties and availability of the
peers.
The rest of the paper is organized as follows. In section 2,
we give a complete overview of the overlay network
structure and develop the peer, super-peer architectures.
In section 3, we present some solutions for dealing with
the dynamic behaviour of the network. Section 4 is
devoted to network recovery after failure of a node. We
report on some experiments in section 5, and we conclude
in section 6.

2. The architecture of MediaPeer
MediaPeer is a P2P data mediation system built on a
hierarchical network formed of peers and super-peers. In
this section, we describe the topology of the network and
the architectures of a peer and a super-peer.

2.1 Network Tree Topology
MediaPeer is an overlay peer-to-peer network architecture
that facilitates sharing and retrieval of XML data.
Physically the network is formed only of peers but
logically it assumes the existence of peers and super-peers
for efficiently clustering and routing the data. Any peer
may be a client, when requesting data, or server when
answering to other peer queries. The super-peers serve
only at routing the data localization demands to peers that
share relevant data. Peers are clustered to super-peers and
super-peers are clustered to super-peers based on data-
description criteria. The overlay network has a tree-like
topology with peers disposed as leaves and super-peers
disposed on different intermediate hierarchical levels.

2.2 Overview of a Peer
Every peer that takes part in the network may share XML
data by providing an XML Schema abstraction of the
local data. This abstraction is a set of XML tree
structures, one for each collection of queryable XML

documents. In MediaPeer we use a simple abstraction
index – a trie index [1].
Our architecture is based on an existing mediator XLive
[3]. The XLive mediator is a data integration middleware
managing XML views of heterogeneous data sources.
Using XLive mediator one can integrate heterogeneous
data sources without replicating their data while the
sources remain autonomous. Basically, the P2P overlay
network is used to localize the data processed by the
mediator distributed engine.
 The architecture of a peer node is represented in figure 1.
It encapsulates one or more data sources in
XML/XQuery. The mediator through specific wrappers
can query several data sources of different types. We
experiment with relational DBMSs (Oracle, MySQL) but
also with XML native DBMSs (Xyleme, X-Hive)[4]. The
mediator provides three services, one to publish path-sets
of XML views of the sources, another to accept queries,
and finally one to publish results in XML. In our current
system, we assume for simplicity that all XML schemas
are derived from a unique ontology and can be integrated
through XQuery without mapping problems. We shall
introduce semantics mappings expressed in XQuery
between XML schemas in a future version, similarly to
[6] for example.

Local DBMS

Wrapper

Mediator

TreeGuide Query Answer

Local DBMS

Wrapper

Mediator

TreeGuide Query Answer

Local DBMS

Wrapper

Mediator

TreeGuide Query Answer

Local DBMS

Wrapper

Mediator

TreeGuide Query Answer

Figure 1. Architecture of a peer

2.3 Overview of a Super-peer
According to its resources (memory or computational)
and to its network availability, any peer may also play one
or multiples super-peer roles. This means that if a peer
has been connected into the network for a long time and
has enough memory to store an index, it may become a
super-peer and, besides asking and answering queries, it
also helps in routing queries.
The reason that motivated our choice is that in a computer
network (i.e., the Internet) and especially in a peer-to-peer
network the only entities that commonly take part in the
communication and processing are computers with similar
resources and availability. Thence, in our network, on
every node may reside one or multiple super-peer
processes and always one peer process. Considering that
peers have a dynamical behaviour (frequently leave or
enter the network), the super-peers that help in routing the
queries may be not stable, which may cause
organisational problems. These problems are treated in
the following sections.

3. Network Dynamic Evolution
In this section, we analyse the dynamic behaviour of the
network under normal conditions (i.e., no computer or
software failure), including load balancing. The overlay
network structure evolves in the following cases: (1) New
peer insertion. (2) Peer deletion (on a voluntarily basis).
(3) Peer data source structural changes. (4) Super-peer
insertion. (5) Super-peer deletion.
MediaPeer implements evolution strategies inspired from
the B-tree reorganisation algorithms. As with practical
implementations of B-trees, we fix a maximum degree D
for the tree and a maximum height H. D and H are
parameters dependent on the network size. A node of
degree greater than D is split in two. If it is the root, it is
also split, except in the situation when the tree has
reached height H. In this case, we implement a special
policy to deal with network saturation that will be
explained in the next section. Contrary to other
architectures, only the super-peers reorganise according to
the variable network load. We have chosen this approach
because reorganisations are performed at low cost.
3.1 Adding a Peer
When a new peer wants to join the network, the following
actions are performed: (i) Localisation of a super-peer to
cluster the new peer. (ii) Update of all the super-peer trie-
indexes, from the peer to the root.
For being able to enter the network, a new peer must
know the address of a peer or of a super-peer. Several
techniques for finding the suitable network entry point are
possible, but a simple one is to use a server that maintains
a reference to an entry point. Then, the peer that wants to
enter the network sends to the entry point an entry-
demand with his IP address.
The system has to determine the best cluster to enter the
peer in. For that, the demand is routed into the network
until it reaches the root super-peer. The demand
evaluation is at first made in a root-coordinated manner.
The root super-peer sends a path-set request with his IP
address to the initiator of the demand, which replies with
its local path-set (given by the mediator metadata
service).
Next, the root forwards the path-set insertion demand to
its children into the network for finding the suitable
super-peer to connect to, i.e., the best cluster. A super-
peer receiving the path-set insertion demand computes a
similarity measure with its trie-index. The similarity
measure quantifies the differences between the super-peer
index-trie and the new path-set. Sophisticated measures
can be used, but we start with a simple one giving the
number of paths appearing in the new path-set but not in
the super-peer index. Measures are sent back to the
parent, which determines the best fit. In the case where
several super-peers return the same maximum similarity,
the child super-peer that provides the most available
resources is selected.
The selected super-peer then forwards the demand to its
children. The process goes on until the demand reaches
the lowest level in the hierarchy, which determines the
super-peer that cluster the new peer. All selected super-

peers on the descending path also update their trie-index
adding information extracted from the path-set concerning
the new peer data. A confirmation of insertion is
forwarded up the tree, so that all concerned peers commit
their trie-index updates including the new peer. Before
updating the local trie-index, every super-peer may
perform different reduction strategies upon the incoming
path-units [1].
The implemented strategy takes advantage of the
hierarchical organization of the network. When
connecting a new node, only the most similar super-peers
have to process the new peer metadata. In this case the
cost of inserting a new peer is O(h*k), where h is the
height of the network tree and k is the average number of
children. It is a top-down strategy that benefits from the
peer clustering for fast insertion of a new peer.
3.2 Deleting a Peer
The procedure of deleting a peer is initiated on demand
from the user, when she/he wants to leave the network.
The peer sends a disconnection demand to his cluster
super-peer. The demand has to go up to the root passing
by all the super-peers in the hierarchy (DOWN-UP). The
disconnection message must contain information
regarding the identification of the peer so that all the peers
on the ascending path will modify accordingly their trie-
indexes. The peer identifier is simply searched in the trie,
and all corresponding entries are removed. Paths with no
peer associated are also removed.

3.3 Updating a Peer
An update upon an XML data source structure (DTD or
schema) at a peer changing some paths requires
propagation in the super-peer network to maintain the
trie-indexes. We proceed then by deleting the peer and
reinserting it in the network. We plan to optimize path-
sets changes in the future. Versions numbers could be
used for managing trie-index updates in real time.

3.4 Adding a Super-Peer
A super-peer is added to the network to keep it efficient,
when a resource manager of a super-peer detects an
overloading. An overloading arises when one of the
following conditions becomes true: (i) The number of
children of a super-peer exceeds the maximum degree D
of the network (similar to the order of a B-tree). (ii) The
resource manager detects an overload in message number,
or memory size (trie-index too large with no reduction
possibility), or average request processing time. The
overlay-network structure changes are triggered only by
stable conditions (i.e, the conditions are met during a time
period). The addition of a super-peer may lead to increase
the number of clusters containing peers with similar data.
To distribute the load, the redistribution of the children
(super-peers or peers) of the overloaded super-peer to
other super-peers has to be performed. This shall be done
under stress conditions for the overloaded super-peer. To
avoid resource contention, we choose to create two new
super-peers, prepare them, and finally integrate them in
the network in place of the overloaded super-peer. The

advantage of this strategy is to avoid disturbing the
overloaded super-peer during the adding process.
Let SP0 be the saturated super-peer. The splitting process
is composed of the following steps:
1. SP0 initiates a demand for a new SuperPeer (SPn).
2. SP0 sends to SPn the local trie-index.
3. SPn initiates a demand for a new SuperPeer (SPm).
4. The trie-index and children are distributed between SPn
and SPm.
5. SPn and SPm open connections to SP0 father and SP0
children.
6. The old connections are closed.
7. SP0 leaves the network.
It is very important to mention that during the splitting
process the network is running. The proposed algorithm
guarantees a continuous network.
The process of load distribution may be recursively
propagated up to the root of the hierarchy if the parent
node detects an overloading condition. It is important to
mention that a node undertakes a split decision only after
a period of overloading to avoid cascading reorganisation
due to node splitting. When the process reaches the root
node the network hierarchy shall increase with another
level.
3.5 Deleting a Super-Peer
Deletion is the situation opposed to that presented in the
previous section. It may generate the regrouping of super-
peers from the same level. The regrouping is valuable
because it reduces the number of super-peers and,
consequently, shortens the number of nodes that a source
localisation request has to follow.

Our deletion algorithm works as follows. When a super-
peer detects a reduced load, it demands to its children a
report with the status of their activity. Following a cost
function threshold, the super-peer may decide the fusion
of two children. The cost function should integrate the
message load of the children, the sizes of their trie-index,
and the resource capacity of the host systems.
To fusion two super-peers, our algorithm first creates a
new super-peer to perform the fusion. This allows the
children to continue their routing role during fusion. The
fusion is controlled by the parent, which demands the
creation of a new super-peer (SPn). SPn then asks the
merging children for their trie-index and merges them.
When this process is finished, an index update is required
to the parent super-peer for replacing the merged children
by SPn in the trie-index. After the update is finished, the
two children super-peers are destroyed as they are
replaced by (SPn) by the quick update of the parent trie-
index (children identifiers removed and replaced). It is
necessary that the parent super-peer blocks all the re-
organisational processes while the replacement procedure
takes place.

3.6 Choosing a Super-Peer Host
When adding or deleting a super-peer, we create new
super-peers (as explained above) that have to be hosted
somewhere. The problem addressed in this sub-section is
how to choose the computer that hosts a new super-peer.

Generally, a computer that maintains a new super peer has
to respect some constraints, among them: (i) It must not
already host some "neighbour" super-peers. For
enhancing the network reliability, a new super-peer
should not be hosted on the computer where already
resides one of its brothers, parents, or children. (ii) It must
provide the resources required for the new super-peer. For
solving the first constraint, the super-peer that initiates the
creation demand send a list with the super-peers that must
not be selected. For the second constraint, the resource
manager checks if enough local resources exist to satisfy
the demand.
The nomination process proceeds as follows. A super-
peer initiates a new super-peer demand. It is sent to
certain favourite addresses from the local list of contacts.
If a super-peer receiving a demand is not able to meet the
necessary resource requirements, it forwards the request
to the addresses from his list of contacts. On the contrary,
if the local computer has enough resources and is able to
host a new super-peer, it holds the required resources for
a time period waiting for a resource locking demand.
After the time period has expired, if no locking demand is
arrived, the resources are released. Thus, the demand for
new resources is forwarded in an organized fashion
starting from most favourite super-peers and ending with
the less favourite ones.

4. Network Reliability and Recovery
In this section, we describe the efficient recovery
procedures proposed for the MediaPeer network.

4.1 Super-Peer Failure
This case appears when a super-peer (SP) leaves the
network due to an internal failure. There are two possible
situations: (i) A node (peer or super-peer) detects the
failure of its parent when passing a request up. (ii) A SP
detects the failure of one of its child when sending a
request down.

In the first situation we adopt a level collaboration
solution. This means that all the super-peers from the
same level will collaborate in order to restore the
functionality of the network. When a node is not able to
send a message to his father SP, it contacts the sibling
nodes (nodes on the same level in the hierarchy with same
father) and a demand is issued for the creation of a new
father SP process (for the children) (to synchronize the
node negotiation for finding a new super-peer, the control
is given to the node with the smallest IP address). The
node responsible for the creation of a new SP follows the
algorithm presented in the previous section. The new
created SP receives the addresses of all its children and
directly starts the treeguide index generation by merging
and reducing the children trie-indexes.
For the second case we adopt a bottom-up technique. The
children will collaborate for rebuilding a functional
network. For that when a SP finds that one of its children
does not respond, it sends a message requesting to one of
the children of the failed SP to generate up a null request.
Next, if the failure is still detected by a non-answer, the
reorganization process takes place as described in the

previous paragraph. In summary, the children nodes
(peers or super-peers) always initiate the recovery
procedure for a super-peer, as they are the ones knowing
(partially) the path-sets to synthesize at the father. Figure
3 illustrates the super-peer recovery procedure.

SP

SP SP

SP SP

P P P P

SP

SP SP

SP SP

P P P P

SP

P
P

(1)

(2)

SP

SP SP

SP SP

P P P P

SP

SP SP

SP SP

P P P P

SP

P
P

(1)

(2)

Figure 3. Super-peer recovery procedure

4.2 Peer Failure
A peer failure is normally detected by a super-peer that
sends messages to the peer and does not receive any
acknoledgment. In this case, the super-peer should answer
the localisation requests, even if the peer is known as not
answering. Two solutions are possible: the pessimistic
one supposes that the super-peer does not answer to the
different requests involving that peer; the optimistic one
assumes the super-peer always answer positively. The
first one will reduce overhead in query processing and
seems to be preferable. In other words, it declares the
source as non-reachable.

4.3 Urgent Peer Elimination / Disconnection
A computer that hosts a peer and one or more super-peers,
when leaving the peer-to-peer network, requires the
deletion of the peer and the replacement of the super-
peers. In this case, a demand is sent directly to the
"Resource Manager" of one super-peer that sends
disconnection messages to all other super-peers on the
same system. The local super-peers make demands for
new super-peers generation (to replace them in the
overlay network) and accordingly, transfer them all the
administrative information.

4.4 Root Saturation

There are two situations that generate root saturation:
• The root memory becomes insufficient for indexing

all the peer path-sets (index-saturation). The index-
saturation at hierarchy root is solved by performing
trie-index reductions by indexing by prefix of labels,
as described in [1].

• There is an overload of messages into the network
that leads to an outsized routing load at the root of the
hierarchy (load-saturation), while the maximal height
of the network has already been reached.

For the last case, to avoid the overloading of the root peer
with routing messages, we propose a technique of level
flooding. This means that in the situation when a super-
peer forwarding up a routing message discovers that his
father is overloaded, it shall transmit the message to all its
sibling peers. In this way, all the messages are forwarded

to peers with relevant indexes (no relevant peer will be
skipped). In the same time the load at super-peer will be
maintained constant. By using level flooding we take
advantage of the flooding features (fast propagation) for a
certain level. Depending on the branching “size” per
level, this process may speed up the query routing
process. In figure 4, we give an example of level flooding.

SP

SP SP

SP SP

P P P P

SP

P P

SPSP

P P P P

SP

SP SP

P P P P

SP

P P

SP

SP SP

SP SP

P P P P

SP

P P

SPSP

P P P P

SP

SP SP

P P P P

SP

P P
Figure 4. Level Flooding

We present in the next section the results of simulations
made over our overlay-network model, that show the
reduction of traffic at the root super-peer in the presence
of level-flooding.

5. Some Experiences

5.1 Hierarchical network routing
We have simulated the query routing process over a
particular model of hierarchical network (every super-
peer clusters two other super-peers and four peers) with a
variable number of peers (8,16,32). For being able to find
the different query paths, we consider that each query is
addressed to only one peer. 8, 16, 32 queries were
simulated. The path followed by each one was analysed
by counting the number of super-peers that participate in
the routing process and the number of links crossed by a
query. By adding different costs to every query action
(routing, network transferring, index search, etc.), a
realistic cost of routing in our model of hierarchical
network is obtained.

0

2

4

6

8

10

0 20 40 60 8

Number of Peers

N
um

be
r o

f S
up

er
-P

ee
rs

0

Figure 5. Number of Routing Super-Peers

According to Figure 5, we observe that the number of
super-peers that take part in the routing process does not
increase proportionally with the number of peers (due to
the proposed clustering). This means that it is more
advantageous to route queries using a hierarchical
network than to use “flooding”. In our architecture, the

effective number of computers that communicate for
performing the routing may be even more reduced
(considering that two super-peers may be localized on the
same physical machine).
Observation: We have analysed our most favorable case
when a query is not duplicated at the super-peer level to
be sent over multiple paths. However, considering that the
peers are clustered according to their schemas, it is
expected that the number of super-peers that are used for
routing in general cases be close to our values.
5.2 Level flooding
For evaluating the effect of “level flooding,”, we have
measured the load at the root of the overlay network. The
two curves in figure 6 show the load at the root in the
presence (down)/ absence (up) of level flooding.

0
5

10
15
20
25
30
35
40
45
50

7 33 67 100 133

Message Number

R
oo

t L
oa

d

Figure 6. The influence of level-flooding

As presented in the graphic, the level flooding method is
suitable for distributing the load from a higher level to
lower level super-peers. By using level-flooding, the
system becomes more scalable and maintains the search-
space dividing features of a tree.

6. Conclusion
In this article, we have presented an easy deployable P2P
infrastructure whose purpose is to integrate large
collections of data distributed over large communities of
peers. The main features of the presented architecture are:
fast data localisation based on tree-organized super-peers,
fault tolerance achieved with the network self-repairing
architecture, easy deployment as to share data a peer must
install some lite modules that will perform the network
tasks. MediaPeer relies on general solutions for
scalability, dynamicity, and fault tolerance in a P2P
network.
Future work includes more measurements of query
performance under stressing conditions for the network.
Currently, the localisation demands include simple
filtering operators; more can be achieved with for
example joins, where the network could be used for
efficient join processing. Further work is also required to
evaluate partial result policies.
Furthermore, as mentioned above, we plan to include a
semantic level for translating local path-sets in global
terms according to some global ontologies. Mapping path-
sets to global ontologies is already operational in the
Satine project [7] we are working on.

7. References
[1] Florin Dragan, Georges Gardarin, Laurent Yeh “Routing
XQuery in a P2P Network using Adaptable Trie Indexes”
Technical Report, PRISM Laboratory, FRANCE, submitted for
publication.

[2] Carlo Sartiani, Paolo Manghi, Giorgio Ghelli, and Giovanni
Conforti. XPeer: A Self-organizing XML P2P Database System.
In Proceedings of the First EDBT Workshop on P2P and
Databases (P2P&DB 2004), Crete, Greece, 2003

[3] Dang-Ngoc, 2003. Tuyet-Tram Dang-Ngoc, Georges
Gardarin.: Federating Heterogeneous Data Sources With XML,
IASTED IKS 2003: Scottsdale, AZ, USA, Nov. 2003.

[4] Florin Dragan, Georges Gardarin “Benchmarking an XML
Mediator”, to appear, ICEIS 2005, Miami, May 2005.

 [5] Crespo, A., Garcia-Molina, H. Routing indices for peer-to-
peer systems. In Proceedings International Conference on
Distributed Computing Systems (July 2002).

[6] Halevy, A. Y., Ives, Z. G., Mork, P., Tatarinov, I. Piazza:
Data management infrastructure for semantic web applications.
In Proceedings of the Twelfth International World Wide Web
Conference (WWW2003) (Budapest, Hungary, May 2003).

[7] Dogac, A., Y. Kabak, G. Laleci, S. Sinir, A. Yildiz, A.
Tumer, " SATINE Project : Exploiting Web Services in the
Travel Industry ", eChallenges 2004 (e-2004), 27 - 29 October
2004, Vienna, Austria.

	Introduction
	The architecture of MediaPeer
	Network Tree Topology
	Overview of a Peer
	Overview of a Super-peer

	Network Dynamic Evolution
	Adding a Peer
	Deleting a Peer
	Updating a Peer
	Adding a Super-Peer
	Deleting a Super-Peer
	Choosing a Super-Peer Host

	Network Reliability and Recovery
	Super-Peer Failure
	Peer Failure
	Urgent Peer Elimination / Disconnection
	Root Saturation

	Some Experiences
	Hierarchical network routing
	Level flooding

	Conclusion
	References

